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Systems of differential equations possessing a finite (or compact) symmetry group and depending on one parameter are considered. 
The nature of the loss of stability of equilibrium positions is investigated in cases when, owing to symmetry, the linearized problem 
has multiple eigenvalues. Conditions are presented that determine whether the loss of stability when the parameter is varied is 
soft or hard, for double eigenvalues ~. - zero or pure imaginary. Cases of triple zero eigenvalues ~, corresponding to tetrahedral 
(or cubic) symmetry, are considered. © 1999 Elsevier Science Ltd. All fights reserved. 

Let r' = f(r, Qt) be a system of differential equations which depends on one (scalar) parameter. Suppose 
that in some range of variation of the parameter the system has an asymptotically stable equilibrium 
position c(a). For simplicity, we will assume that the interval is given by the inequalities ¢q < ot < 0. 
As is well known, in a typical family of equations of general form there are only two scenarios for the 
equilibrium to lose its stability as the parameter is varied: (1) at a critical parameter value a = 0 one 
branch of c(ct) merges with another branch ~'(a), and as the parameter continues to vary they "annihilate" 
(more precisely: for small a > 0 in some domain U containing c(0), there are no equilibrium positions); 
(2) as ot varies, the equilibrium position c(Qt) evolves smoothly; it becomes unstable when ot > 0 and a 
limit cycle of small amplitude forms around it (in this situation the stability loss is soft if the cycle is 
born when ¢t > 0 and hard otherwise; see [1, Section 33]). The first case occurs when one eigenvalue 
7~ of the linearization operator L -- f~(c(0), 0) vanishes (in that case one need not speak of "loss of 
stability of the equilibrium", for the equilibrium itself disappears). The second case occurs when a pair 
of complex conjugate eigenvalues crosses the imaginary axis. 

The general rules are not applicable if the system possesses some kind of symmetry. A frequently 
encountered case is a system whose right-hand side is an odd function of r. Here r = 0 is an equilibrium 
position for all ct. When it happens that ~. = 0, a pair of equilibria c±(~t) split off this equilibrium--a 
"pitchfork" bifurcation occurs. Here, again, the stability loss may be either soft or hard. 

This example, however, lacks an important feature of symmetric systems: the presence of multiple 
eigenvalues ~ at all parameter values. Multiplicity of this sort may occur if the symmetry group is non- 
commutative, in which case the events accompanying the stability loss may be extremely complicated. 
For example, "chaotic" low-amplitude oscillations may split off the equilibrium if, as the parameter 
passes through the critical value, a quadruple zero eigenvalue g [2] or a triple pair of pure imaginary 
Z.'s [3] appear. 

As in general systems, the nature of the loss of stability of an equilibrium position as the parameter 
varies is determined by what happens "at the critical moment." If asymptotic stability is still preserved 
at (x = 0, the stability loss when ct > 0 is soft. But if the equilibrium is unstable when ct = 0, the stability 
loss is hard [4, Section 44; 5, Chapter 1, Section 5]. 

In this paper we will present stability criteria when a = 0 for cases of double critical (zero or pure 
imaginary) eigenvalues k and triple zero ~.'s.$ Basically, we will be considering finite symmetry groups: 
in the case of continuous symmetry groups (and isolated equilibrium) the problems are usually simplified. 
As in the case when there is no symmetry, it is much easier to investigate the stability problem when a 
= 0 than to solve the bifurcation problem--to delineate the local phase portrait for small et. In many 
cases here, an answer is obtained although the full bifurcation picture is not known. This is precisely the 
case for half of the cases with double imaginary g (Section 3) and for the problems in Sections 5 and 7. 

In order to implement the stability criteria given below one has to find the factors appearing in them. 
This is a separate non-trivial problem (see [6]) requiring computer simulation (see [7, Chapter 10]). 

tPrikl. Mat. Mekh. Vol. 63, No. 4, pp. 554-560, 1999. 
•The details, including part of the proofs, will be omitted here. See SHNOE, E. E., The loss of stability of equilibrium positions 

in symmetrical systems of differential equations. Preprint. Pushchino Scientific Centre of the Russian Academy of Sciences, ~ 998. 
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1. S T A T E M E N T  OF T H E  P R O B L E M  AND A D D I T I O N A L  I N F O R M A T I O N  

Let (1.1) be a one-parameter  family of differential equations which is invariant under a finite (or 
compact) group F of linear transformations 

dr/dt = f(r, o0, r, f E R"; f(0, o0 -- 0 (1.1) 

f(gr, c~) = gf(r, ~), g ~ F (1.2) 

We may assume without loss of generality that the elements g of F are orthogonal transformations in 
the sense of some scalar product. For simplicity, we will assume that r = 0 is an equilibrium position 
for all values of the parameter  ~t (possessing maximum symmetry). The general case, in which the 
equilibrium position c(ot) is invariant only under some subgroup of F, is easily reduced to this special 
case if F is a finite group. It is assumed that for etl < a < 0 all the eigenvalues L of the linearization 
operator  La = fr(0, ~t), lie in the left half-plane, but when a = 0 some k's are on the imaginary axis. 

Problem. It is required to determine the nature (soft or hard) of the loss of stability of the equilibrium 
r = 0 for a given group F. Or, what is the same: it is required to determine whether the equilibrium at 
the critical value a = 0 is stable. 

The phase space may be expressed, not necessarily uniquely, as a direct sum of orthogonal subspaces 
invariant under the group F and irreducible (not containing proper invariant subspaces) 

R n = El • ... • Es (1.3) 

When considering the eigenvalues of the operator LQ one has to work in the complex domain, first 
extending the action of the linear transformations g in a natural way. Each subspace Ek then become 
a complex subspace/~g. If Ek is of odd dimension, then Ek will again be irreducible. If Ek is even- 
dimensional, there are two possibilities: (1)/~k splits into the sum of two invariant subspaces of half 
the dimension; (2)/~k is irreducible. In the latter case we will call Ek an absolutely irreducible subspace. 

Let us assume that the operator L0 has a v-fold eigenvalue k = 0. The corresponding eigensubspace 
Ei will be invariant under the action of the symmetry group F. The following situation is "typical", that 
is, is preserved under  an arbitrarily small perturbation of the initial family of equations that does not 
destroy its symmetry (or corresponds to codimension 1 in the class of symmetric equations): E consists 
of eigenvectors and is one of the absolutely irreducible subspaces Ek. For v-fold imaginary k, the subspace 
E (of dimension 2v) may be either reducible or irreducible (see [8, Chapter 16; 9] and the Appendix). 

Example. Let m identical two-dimensional systems be combined into a ring by linear connections of the "diffusion" 
type. The full system of 2m equations is 

q'~ = h(qk) + D(qk+l - q~) + D(qk-1 - qk), k = 0, 1 ..... m - l(mod m) (1.4) 

where q and h are two-dimensional and D is a diagonal matrix (positive dl and d2 on the diagonal). If the two- 
dimensional system q' = h(q) has no "internal" symmetry, the group F for (1.4) is isomorphic to the complete 
symmetry group of a regular m-gon. There is a two-dimensional subgroup invariant under the action of F, call it 
E(°); this subgroup is defined by the conditions q0 = • • • = qm-l; any straight line in E (°) is also invariant. If m is 
odd, there are (m - 1)/2 further four-dimensional invariant subspaces E(t); in E (t) 

qk = a cos (kOi) + b sin (k0/), 0 t = 2~l/m 

where a and b are arbitrary two-dimensional vectors. Each subspace E (t) splits (possibly in more than one way) 
into the sum of two-dimensional subspaces which are invariant under the group F. Thus, the decomposition (1.3) 

(m/2) contains two one-dimensional and m - 1 two-dimensional terms. (If m is even, the subspace E is two-dimensional 
and (1.3) contains four one-dimensional terms.) 

System (1.4) has symmetric equilibrium positions: all ~ = q., h(q.) = 0. If dl ~ d2 and any parameter is varied, 
one of these equilibrium positions may lose its stability with a loss of symmetry--that is, it will leave the subspace 
E (°) (which is invariant for Eqs (1.4)). When that happens, double zero or pure imaginary eigenvalues appear and 
discrete analogues of "dissipative structure" or waves are created. 

Remark. In this comparatively simple example, all bifurcation events are known (see, in particular, [8, Chapter 
18]). 

There is a general theorem that enables one, when considering bifurcations, to study a system of 
differential equations whose dimension is the number of eigenvalues on the imaginary axis. This is the 
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Centre Manifold or Neutral Manifold Theorem ([1, Section 32; [10, Chapter 2). An analogous result 
was established previously for the stability problem [11]. In what follows we will consider precisely such 
systems, which have the minimum possible dimension for a given group F. In such situations not all the 
group F"works",  but only its restriction G to a subspace E (or, what is the same, to the centre manifold). 

2. D O U B L E  Z E R O  ~, 

Suppose the two-dimensional system r '  = f(r) is invariant under a group of orthogonal transforma- 
tions G with absolutely irreducible action in R ~ (see Section 1). There are two possibilities: (1) G is the 
complete group of orthogonal transformations O(2), (2) G is Din--the complete symmetry group of a 
regular m-gon. 

By assumption, L = f (0)  = 0, that is, there are no linear terms in f(r). The problem of the stability 
of the equilibrium r = 0 in the first case is trivial. Here the system has the form 

x" = axr  z + OQa),  y ' =  ayr  = + O(r  4) 

and stability depends on the sign of a. 
For the group D,,,, let us introduce Cartesian coordinatesx andy so that thex axis is an axis of symmetry 

of the m-gon; note that each axis of symmetry is an invariant straight line for the system. Then systems 
with symmetry D,,, in the complex coordinate ~ + x + iy will have the following form (a and b are real) 

m = 3: 4' = a~ 2 + O(r3), 1"2 = Igl z = x z + y2 

m = 4: ~ '=  a~J~l 2 + b~3 + O(r4) (2.1) 

m I> 5: 4 '=  a~l~[ 2 + O(r 4) 

Remark. Such systems arise when investigating bifurcations of limit cycles in general, non-symmetric systems 
[1, Section 35]. There, however, the coefficients are complex. 

For m = 3 and m I> 5 the answer to the question of stability is very simple. If m = 3, we have on the 
x axis an equation x" = ax  z + O(x3): the equilibrium position x = y = 0 is unstable if a ~ 0. If m / >  5, 
one has asymptotic stability when a < 0 and instability when a > 0: A = x 2 + yZ is a Lyapunov function. 

Proposi t ion 2.1. The equilibrium positionx = y = 0 of system (2.1) with symmetry D 4 is asymptotically 
stable provided that a < 0, l a [ > [b], or 

a + b < O , a - b < O  

The equilibrium position is unstable if a > 0 or la ] < I b I. 

(2.2) 

Proof. Set A = I~l 2. Along trajectories of system (2.1), A' < 2ar 4 + 2 1 b l / +  O(rS). If (2.2) is true, then A' < 0 
for 0 < I~1 < r., and the equilibrium position ~ = 0 is asymptotically stable. On thex axis we havex' = 2(a - b~  3 

4 p 3 4 + O(x ), and the instability for a + b > 0 is obvious. On the (invariant) line x = y we have x = 2(a - b)x + O(x ), 
and instability for a - b > 0 is also obvious. 

3. D O U B L E  I M A G I N A R Y  1 

A double pair of pure imaginary eigenvalues arises when one parameter  is varied in two ways (see 
the Appendix). The bifurcation pictures in these situations are very different (and known only partially-4:), 
but for the problem of stability at the critical moment  this difference is not significant. In both cases 
the system of four equations on the centre manifold at ct = 0, after reduction to normal form up to the 
third order inclusive, has the following form 

41' = ifD~l + ~l(Alt] 2 + A2 r2) + O(r4),  rk =l ~k [ 

(3.1) 

42'  = i0)~2 +~2(A2fi 2 + AI r~ ) + O( r4 ), r2 = rl 2 + r~ 

tSee SHNOL' E. E. and NIKOLAYEV Ye V., Bifurcations of equilibrium positions in systems of differential equations with 
a finite symmetry group. Preprint. Pushchino Scientific Centre of the Russian Academy of Sciences, 1997. 
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where ~1 and ~2 are complex variables and A1 and A2 are complex coefficients; in the first case, as a 
rule, A1 ~ A2; in the second, on the contrary, A1 = A2 always. System (3.1) has the same appearance 
as in the problem of stability with two different pairs of imaginary eigenvalues (+_ io)l, --- i(o2). More 
precisely, it is obtained from the general notation by putting 0~ = 0)2 and choosing the coefficients of 
the cubic terms in a special way. 

The stability criterion for this case (due to G. V. Kamenkov; see [12] and [13, Section 1.3]) yields: 
the equilibrium position (0, 0) of system (3.1) is asymptotically stable if the following two conditions 
are satisfied: (1) al < 0; (2) a 1 + a2 < 0 (ak = Re (Ak)); the equilibrium position is unstable if al > 0 
or al + a2 > 0; in the second case, when al = a2 = a, stability depends on the sign ofa .  

4. T R I P L E  Z E R O  L 

Here G is a subgroup of the group 0(3)  of orthogonal transformations of three-dimensional space 
with irreducible action, that is, it has no invariant subspaces of dimensions 1 and 2. Let G+ denote the 
subgroup of all proper orthogonal transformations in G; each such transformation is a rotation about 
some axis I. 

The right-hand sides of the system form a vector field f which is invariant under G in the sense of 
(1.2). If the straight line l is a rotational axis of symmetry, then fis parallel to l; this straight line is invariant 
for the equations. 

We have the following possibilities for the group G+, in which G acts irreducibly [(14 Section, 13; 
[15], Section 93]): (1) G+ is the whole group of proper orthogonal transformations SO(3); (2) G+ is 
the group T of rotations of a tetrahedron (12 elements); (3) G+ is the group O of rotational symmetries 
of a cube (or a regular octahedron), which contains 24 elements; (4) G+ is the group Yof  rotations of 
a regular dodecahedron (or icosahedron). 

Case 1 is trivial. Later we will consider Case 2 in detail and present the results for Cases 3 and 4. 

5. T E T R A H E D R A L  SYMMETRY (G+ IS THE G R O U P  T 
OF ROTATIONS OF A T E T R A H E D R O N )  

Let x, y, z be Cartesian coordinates; we write the system of three equations as 

x' = u(r, ~), y' = v (r, t~), z' = w(r, t~) (5.1) 

When ct = 0 there are, by assumption, no linear terms in u, t) and w. By (1.2), under transformations 
of G the vector field f = (u, t), w) transforms like r --- (x, y, z). The same holds for any homogeneous 
component of the field fk = (Uk, Ok, Wk) (fk is the set of terms of degree k in the Taylor expansion of f 
in powers of r). 

Let us position a regular tetrahedron in such a way that its axes of symmetry of second order (passing 
through the mid-points of opposite edges) coincide with the coordinate axes. Then the four axes of 
third-order symmetry (passing through the vertices) coincide with the bisectors of the coordinate octants: 
x = +_. y = ___ z. We shall say that the vector field is invariant under the group of linear transformations 
if it satisfies relations of type (1.2) (such vector fields are also known as "equi-variant" fields). 

L e m m a  5.1. A quadratic vector field f2 which is invariant under the group T (with the representation 
described above) has the form 

ll 2 "~ a y z ,  u 2 = a z x ~  w 2 = axy 

Proof. In a rotation about the x axis through 180 °, x ~ x, y ---} - y, z ~ -z, and necessarily also u ~ u. Hence 
c = 0 and P2(Y, z) = ayz. The form of o2 and w2 is established in an analogous way. That the coefficients are identical 
follows from the fact that rotation through 120 ° about the axis x = y = z takes u --} t~ and t) ~ w. 

Remark. A quadratic field f2 is also invariant under the complete symmetry group Td of the tetrahedron (including 
reflections). 

By Lemma 5.1, the system of equations has the following form when ct = 0 

x' = ayz +..., y' = azx +..., z" = axy +... 

where the dots stand for terms O(r3). The equilibrium position (0, 0, 0) is unstable at a ¢ 0. Indeed, 



The loss of stability of symmetrical equilibrium positions 535 

the straight line l: x = y = z is invariant for the system (see Section 4). On l the system reduces to an 
equation x' = ax 2 + O( [x [ 3), and instability is obvious. The foregoing implies the following. 

Proposi t ion 5.1. Suppose a system r' = f(r, ct) of three differential equations is invariant under the 
rotation group T of a tetrahedron or its complete symmetry group Ta. Then the system has the form 

r '  = ~,(c~)r + a(e0s2(r) + O(Irl 3) 

Let  ~.(0) = 0 and suppose the following non-degeneracy conditions are satisfied: (1) ~.'(0) ¢ 0, 
(2) a(0) ¢ 0. Then if ot = 0 the equilibrium position r = 0 experiences a hard stability loss. In suitable 
variables, s2(r) = 0'z, zx, xy). 

We will consider one further possibility. When G+ = T, the complete symmetry group G may be 
obtained by adding a central symmetry (see [13], Sections 93, X). Under such a group G the right-hand 
sides of the system are odd functions, there are no quadratic terms, and instability at ot = 0 is no longer 
the rule. 

L e m r n a  5.2. A vector field 1'3 invariant under the group T (with the above representation) has the 
form 

Proof. We write 

u s = x (ax  2 + by 2 + cz2), u 3 = y(ay 2 + bz 2 + cx 2) w 3 = z(az 2 + bx  2 + cy 2) (5.2) 

u3 = ax s + x2pl(y, z) + xe2fy, z) + Ps(Y, z) 

For rotation about the x axis through 180 ° we have necessarily u --0 u. Hence P1 = P3 m 0. For rotation about 
they axis through 80 ° necessarily u -~ -u. Hence P20', z) = by 2 + cz 2. For rotation about the axisx =y  = z through 
120", u ---) t~ and u --+ w, and therefore the corresponding coefficients in formulae (5.2) are identical. 

Proposi t ion 5.2. Suppose a system r = f(r) of three differential equations is invariant under the group 
G (generated by the group T and central symmetry). Then 

1. In suitable variables, the system has the form r' --- f3(r) + O( I r l 4), and the cubic terms fs(r) are 
as described in Lemma 5.2. 

2. The equilibrium position r = 0 of the system is asymptotically stable provided that 

a <0 ,  a + b  + c < 0  (5.3) 

3. The equilibrium position is unstable if a > 0 or a + b + c > 0. 

Proof. 1 follows from the lemma. 
2. When inequalities (5.3) are true, A = 1/21r 2 [ is a Lyapunov function. Indeed, the derivative A' along trajectories 

of the system is 

a(x 4 + ),4 + z 4) + (b + c)(x2y 2 + y2z2 + z2x 2) + 0 0 5 )  (,- = Irl) 

I f a < 0 a n d b + c < 0 ,  t h e n A ' < 0 f o r 0 < r < r . .  
I f a < 0 a n d b + c ~ > 0 ,  then 

A' < (a + b + c)(X 4 + y4 + Z4) + O(1.5) 

The right-hand side of this inequality is negative for 0 < r < r, if a + b + c < 0. 
4 3. Thex axis is invariant for the system. On it, x' = ar  s + O(x ), and instability when a > 0 is obvious. On the (invariant) 

, 4 straight linex = y = z we havex = (a + b + c)x 3 + O(x ), and instability when a + b + c > 0 is also obvious. 

6. C U B I C  S Y M M E T R Y  (G+ IS T H E  G R O U P  O OF R O T A T I O N A L  
S Y M M E T R I E S  OF A C U B E )  

Choose the Cartesian system of coordinates so that its axe are parallel to the edges of the cube and 
its origin is the centre of  the cube. 

Suppose a system of three differential equations is invariant under the rotation group O of the cube 
or the complete group Oh of symmetries of the cube. Then in the variables indicated the statement 
obtained by setting b -- c in Proposition 5.2 holds. 
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7. D O D E C A H E D R A L  S Y M M E T R Y  

In this case there are no quadratic terms in Eqs (5.1), while the cubic terms have the same form as 
in spherical symmetry. 

Proposition 7.1. Suppose a system of three differential equations is invariant under the group Y of 
rotations of a dodecahedron. Then 

1. the system has the formx~: = ax~ -2 + O(r 4) (Xk (k = 1, 2, 3) are Cartesian coordinates); 
2. the equilibrium position (0, 0, 0) is asymptotically stable when a < 0 and unstable when a > 0. 

A P P E N D I X  
( D O U B L E  I M A G I N A R Y  2. I N  P R O B L E M S  O F  C O D I M E N S I O N  1) 

Let R n = E1 + • • • + Es be a decomposition of the phase space into irreducible components (see 
Section 1). Let Fk denote the restriction of the group F to the invariant subspace Ek. T h e  correspondence 
F ~ Fk yields a (linear) irreducible representation of the group F in the space El/. Double imaginary 
eigenvalues of the operator L~ may arise (in a non-removable way) when a single parameter is varied, 
in two cases [8, 9]: 

1. A four-dimensional subspace Ek exists for which the representation F ---> Fk is not absolutely 
irreducible (it splits upon complexification). 

2. Two two-dimensional subspaces Ei and Ej exist for which the representations are absolutely 
irreducible and isomorphic. 

In the first case the four-dimensional eigensubspace E corresponding to a double L = __.co is Ek. In 
the second case E is the direct sum of  El and Ey. Whether necessarilyAl = A2 in formula (3.1), depends 
on the group G-- the restriction of F to the subspace E (see the paper referred to in the footnote to 
Section 3). 
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